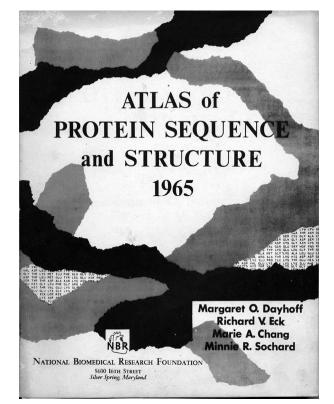
Bioinformatics


Discipline of quantitative analysis of information relating to biological macromolecules with the aid of computers Developed to due advances in both molecular biology and computer science over the past 30-40 years

Milestones

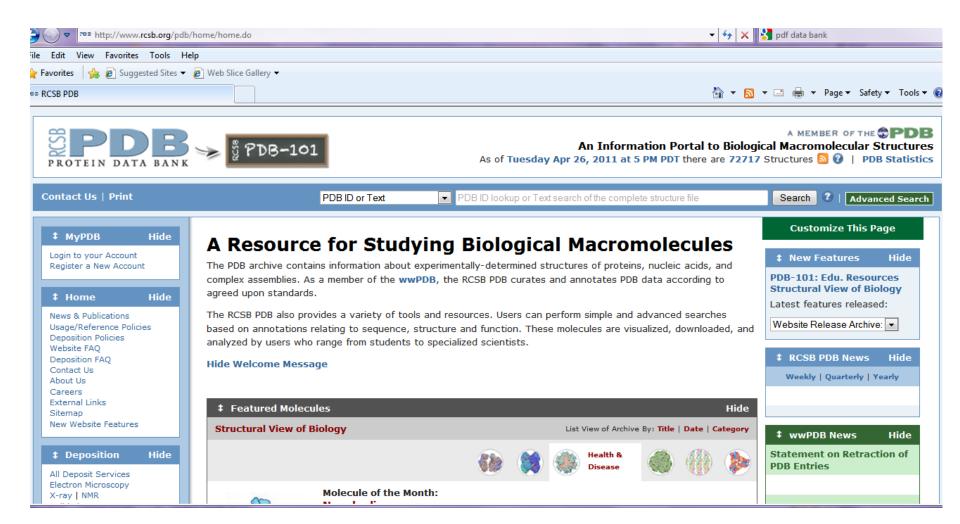
• 1960's:

- Earliest bioinformatics efforts with Margaret Dayhoff and her development of computer aids to help determine protein sequences (1961)
- She also developed 1st protein sequence database called 'Atlas of Protein Sequence and Structure" (1965)

• 1970's:

 Protein Data Bank (PDB) established for archiving 3-D protein structures

• Had less than 12 structure at start; now has more


J Mol Biol. 1970 Mar;48(3):443-53.

A general method applicable to the search for similarities in the amino acid sequence of two proteins.

Needleman SB, Wunsch CD.

by Needleman and Wunsch

- Paved way for routine sequence comparison and database searching
- First protein structure prediction by Chou and Fasman
 - Pioneered series of developments in protein structure prediction

• 1980's:

– Genbank:

- Database of publicly available genetic (DNA) sequences (and their protein translations) at the NIH (National Institute of Health)
- NCBI:
 - Established in 1988 as a national resource for molecular biology information
 - Division of the National Library of Medicine (NLM) at the NIH
 - Creates public databases, conducts research in computational biology, develops software tools for analyzing genome data, and disseminates biomedical information
 - Aim is to improve understanding of molecular processes affecting human health and disease
- BLAST: Basic local alignment search tool

• **1990's**:

- Start of human genome project

 Development of internet increased access, exchange and dissemination of biological data

Overview of bioinformatics advances

	1962	Pauling's theory of molecular evolution
	1965	Margaret Dayhoff's Atlas of Protein
		Sequences
	1970	Needleman-Wunsch algorithm
	1982	GenBank Release 3 made public
	1982	Phage lambda genome sequenced
	1988	National Center for Biotechnology
		Information (NCBI) created at NIH/NLM
	1990	BLAST: fast sequence similarity
		searching
1	1995	First bacterial genomes completely
		sequenced
	1996	Yeast genome completely sequenced
	1998	Worm (multicellular) genome
		completely sequenced
	1999	Fly genome completely sequenced

Human genome sequenced: 2003

- Explosion of genomic sequence information (via genome projects) generated demand for efficient computational tools to manage and analyse data
 - Development depended on knowledge generated from *mathematics*, *statistics*, *computer science*, *information technology and molecular biology*
 - Merger of these <u>disciplines</u> created an information-orientated field in biology now known as <u>bioinformatics</u>

Bioinformatics:

Storage, retrieval, manipulation & analysis of biological information

- Union of biology and informatics
- Computers are used for storage, retrieval, manipulation and distribution of information related to biological macromolecules such as RNA, DNA and proteins.

Applications of bioinformatics

- Basic genomic & molecular biology research
- Biotechnology and biomolecular science
 - Knowledge-based drug-design
 - Computational protein-ligand interaction allow rapid identification of novel leads for synthetic drugs
 - Forensic DNA analysis
 - Pharmacogenomics
 - Identification of mutations in genome could allow early diagnosis and/or determine type of treatment

Summary

- Biological information:
 - sequences of DNA
 - sequences of proteins
 - sequences of genomes
 - references
- Because of this large amount of Biological information it is necessary to have computerized databases to:
 - Store, organise and index all the information
 - Update, retrieve, view, analyse and evaluate data
 - <u>Pubmed</u> is an example of a <u>reference</u> database (housed by NCBI) and we will use this as our first example.

Bioc 315 course

- Databases and Resources studied
 - <u>NCBI</u> (USA; http://www.ncbi.nlm.nih.gov/)
 - NCBI = National Centre for Biotechology Information
 - Pubmed, Books, Nucleotide, Protein, OMIM, Structure etc
 - BLAST
 - Swiss Institute for Bioinformatics
 - EXPASY (http://ca.expasy.org/)
 - EXPASY = Expert Protein Analysis System
 - *[EMBL (European Molecular Biology Lab; http://www.embl.org/)
 - EMBL-EBI (DNA/RNA), UniProt (proteins), EMSD (3D)]

* Not for test/exam

On NCBI you can find....

Pubmed: Life sciences articles for biomedical journals Bookshelf: Collection of biomedical books

OMIM: Catalog of human genes and genetic disorders (= Online Mendelian Inheritance in Man)

Taxonomy: Organisms represented in the genetic database with at least one nucleotide or protein sequence

Structure: Macromolecular 3D structures as well as tools for their visualization and comparative analysis

Nucleotide: Nucleotide sequences

Protein: Protein sequences

BLAST: Basic Local Alignment Search Tool

ENTREZ: Integrated, text-based search and retrieval system for the major databases

On EXPASY you can find....

UniProt Knowledgebase (Swiss-Prot and TrEMBL):

Protein knowledgebase consists of completed protein sequences and translated DNA sequences

ProtParam: prediction of protein size, PI, half-life

PROSITE: protein domains, families & functional sites

SWISS-MODEL Repository:

Theoretically calculated (automatically generated) protein models.

SWISS-2DPAGE:

Two-dimensional polyacrylamide gel electrophoresis

...and more